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Ahstract: We provide the M-theory for the standard multivariate linear model Y= XB + E. where Y is n x p
matrix of observations, X is n x m design matrix. B is ni x p matrix of unknown parameters and E is a x p

matrix of errors with the row vectors independently distributed. Two test criteria based on the roots of I
determinantal equations are proposed for testing linear hypotheses of the form P'B = ',, where P is a matrix
of rank q. The tests are similar to those considered in MANOVA using least squares techniques. One of them
is the Wald type statistic and another is the Rao's score type statistic. The asymptotic distributions of these test
statistics are derived. Consistent estimates of nuisance parameters are obtained for use in computing the test
statistics.

The M-method of estimation considered is the minimization of Xp(ej, where p is a convex function and e,
is the i-th row vector in ( Y-XBI. All results are derived under a minimal set of conditions.
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1. Introduction

In a recent paper Bai, Rao and Wu (1992) considered the problem of estimation
and testing under the M-theory for the model

Yi = Xi'fl + Ei, (1.1)
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78 Z.D. Bai et a/. / A1NOV,4 type tevts

where Y, is a p-vector of observations, c, is a p-vector of errors, {X, I is a design se-
quence of in xp matrices and f# is an in-vector of unknown parameters. The discus-
sion was confined to estimation of f# by minimizing

S(Y,-X,'fI) (1.2)

choosing any convex function Q. The asymptotic distribution of #, the estimate so
obtained, was derived. For testing the hypothesis P'#3 = Co, the test criterion pro-
posed was the likelihood ratio type

min E Q(Y,-Xi'#3)-min E Q(Y1-Xi'fl), (1.3)P'#f = Co) #

which, under suitable normalization, has an asymptotic distribution which is a mix-
ture of chi-squares.

We now consider a special case of (1.1), the standard multivariate linear model

Y, = B'Xi+ e, i= 1,... n, (1.4)

where Yi and Ei are as in the model (1.1), B is an m xp matrix of regression coeffi-
cients and {Xi} is a design sequence of m-vectors. As in (1.2), we estimate B by
minimizing

Q. (i- B'xi), .5

where g is a covex function, and develop MANOVA type analysis leading to test
criteria based on the roots of a determinantal equation for testing hypotheses of the
type P'B== Co, where P is m x q matrix of rank q.

2. Notations and assumptions

Let y/(u) be a choice of a subgradient of e at u = (ul,..., up)'. [A p-vector V/(u)
is said to be a subgradient of o at u, if Q(z)>ŽQ(u)+(Z-U)'V1(u) VzERP.] Note
that if o is differentiable at u according to the usual definition, Q has a unique
subgradient at u and vice-versa. In this case

Y( =VQ(u) =-(° O(8u, ....

Denote by q the set of points where g is not differentiable. This is, in fact, the set
of points where V/ is discontinuous, which is the same for all choices of V. It is well-
known that 9 is topologically a F. set of Lebesgue measure zero (ref. Rockafeller
(1970), p. 218 and Section 25).

We assume that W'(u) is measurable and make the following assumptions as in
Bai, Rao and Wu (1992):

i
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(A]) The common distribution function F of ei satisfies F(9) = 0. (This ensures that
certain functionals of V which appear in our discussion have unique values.)
(A2) Ey/(el +u)=Au+o(•u ) as lull 0, where A >0 is a pxp constant matrix.
(A 3) El'(el + u)J 2 is finite for small •uI and is continuous at u =0 as a function
of u.

(A4) E[w(e,)J[•,(e,)]'=F> 0.

(A5) Sn = E XiX" >O,
i=l

and
d?2 = max X,'S-1X, -- 0 as n-oo.

We denote by 6 and A any values of B which minimize

So(Yi- B'Xi)
i=!

respectively without any restriction and subject to the restriction

P'B = Co (2.1)

specified as a hypothesis, where P is a m x q matrix of rank q. Further let
n

ý(B) = Xi[q/(Y - B'Xi)]' (2.2)

which is an m xp matrix.
For testing the hypothesis P'B = C0 , we propose two alternative test criteria. One

is based on the roots of the determinantal equation

Iw,"-OA-ITA-'I =0, (2.3)
where

W, = (P'-C 0o)'(P'S,1'P)-1(P'B-C0 ) (2.4)

is the Wald type statistic, and (A, f) is a consistent estimate of (A, F), the matrix
parameters defined in assumptions (A2) and (A4 ) respectively. In Section 5 of this
paper, we discuss the estimation of (A, F). Another test is based on the roots of the
determinantal equation

lR, - 0Ofl = 0, (2.5)
where

Rn= •(B)'Sw (A) (2.6)

is the Rao's score type statistic (see Rao (1948)), and f is a consistent estimate of
F. The asymptotic distribution of the roots of (2.3) or (2.5) is the same as that in
the normal theory, and hence the tests proposed by Fisher and Hsu (se,. for instance
Rao (1973, pp. 556-560)) can be used.

It may be noted that tests of the above type were suggested by Sen (1982) and

- 1
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80 Z.D. Bai et al. / MANOVA type tests

Singer and Sen (1985) in the multivariate situation under methods of M-estimation
and assumptions different from ours, and by Schrader and Hettmansperger (1980)

in the univariate case. Some papers of related interest are by Inagaki (1973), Heiler

and Willers (1988) and Juretkovd (1983). It may be seen that our conditions are

somewhat simpler in view of the convexity of the loss function.
In Section 3, we state the main theorems and in Section 4, we provide proofs

under what we believe to be a minimal set of conditions. A new feature of the paper
is the discussion on consistent estimation of the nuisance parameters A and F
without making any further assumptions on V/.

The results of the paper could be extended to other methods of M-estimation such
as those with scale invariance or those based on estimating equations only. But they
seem to need heavy assumptions for a rigorous treatment. It would also be of some
interest to consider rates of convergence and related problems. We hope to consider
such problems in future research.

3. The main theorems

For convenience, we write

Xi" = S"n/ 2Xi, Pn = (P'Sn; P)-/ 2 p'Sf"1/2, (3.1)
so that n

XonX,, = Im, PnPn = Iq, (3.2)

n
Ur', = A- _1 Y1(ei)Xi"',P,,= (u,, ..... Uqn), (3.3)

i=1I

nVn' = Y1q(Ei)Xi'nPn, = (Vin, ..... vqn)- (3.4)

i=1I

We also consider a sequence of alternatives to the null hypothesis P'B = CO

Hn: P'(B-Bo) = P'A,, (3.5)

where B0 and A, are known m xp matrices such that

P'Bo = CO and 11S 12AnI = O(l), (3.6)

and denote

en= PnS/' 2Ann = (P'Sn'P)-J/P'An" (3.7)

It is easily seen that u1 ,- .... , Uqn are asymptotically independent with the common
limiting distribution Np(OA-'FA-'), so that the limiting distribution of U;,U,, is

central Wishart on q degrees of freedom, Wp(q, A FA - 1). Similarly Vi,, . Vq n, are
asymptotically independent with the common limiting distribution N(0,1'), so that

I
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the limiting distribution of VV 0 is central Wishart on q degrees of freedom,
Wp(q, F).

We have the following theorems concerning the asymptotic distributions of W,
and R0 under the null hypothesis and also under the sequence of alternative hypo-
theses (3.5).

Theorem 3.1. Assume that under the model (1.4), the assumptions (Al )-(A5 ) and
condition (3.6) on the sequence of alternative hypotheses hold. Then

Wn,= (Un+eO)'(Un+On)+Op0l) asn-,0o. (3.8)

Especially, if the null hypothesis Ho holds or 11Sl 2/A' -*0 as n -oo0, then the
asymptotic distribution of Wn is the central Wishart, Wp(qA-' TA-'). If the local
alternatives On =(P'S,1 'P)- " 2P'Az has a limit #00 as n - oo, then the asymptotic
distribution of W, is the noncentral Wishart, Wp(qA-1 A-', O'). [See Rao
(1973, p. 534) for the definition of noncentral Wishart distribution.]

Theorem 3.2. Suppose that under the model (1.4), the assumptions (A1 )-(A5 ) are
satisfied, and condition (3.6) holds. Then

Rn = (Vn+9nA)'(Vn+& 0A)+op(1) as n -- oo. (3.9)

Especially, if Ho holds or ISp,/2Anl1 - 0 as n --* oo, the asymptotic distribution of R,
is the central Wishart, Wp(q, F). If the local alternatives en has the limit 0*0,
then the asymptotic distribution of R, is the noncentral Wishart, Wp(q, F, AO'OA).

Note: The test based on W,, involves two nuisance matrix parameters F and A,
both of which need to be estimated for computing the test criteria. On the other
hand, the test based on Rn involves only the nuisance matrix parameter F, which
only needs to be estimated. Further, the local power for the sequence of alternatives
considered depends on the magnitude of the roots of the equation

I0"0- AA -FA -'I = 0 (3.10)

for the test based on W, and on the roots of the equation

jAe'OA- -F = 0 (3.11)

for the test based on Rn. Since the roots of (3.10) and (3.11) are the same, the two
alternative tests are equally efficient asymptotically. In such a case, the test based
on R, may be preferred to that based on W, as only F has to be estimated in the
former case and both Fand A have to be estimated in the latter case. This statement
is true only for large samples. The relative merits of these two tests remain to be
investigated in small samples.

t
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4. Proof of the main theorems

In the following, for a set A, I(A) denotes its indicator function. We write

B* = vec B = vec(fll:... p) = (#I, ..... ', (4.1)

and the same notation applies to other matrices.
To prove the theorems stated in Section 3, we need some lemmas. Without loss

of generality, we assume that C0 =O in (2.1), i.e., Bo,=O in (3.5). There exists an
m x (mn - q) matrix K of rank m - q such that

P'K = 0. (4.2)

Without loss of generality we can assume that K'A, = 0. The hypotheses H0 and H,'
can be written as

H0 : B=KMo for some (m -q)xp matrix M0 ,

H,: B = KMo + A,.
Define

Pn = (P'Sn-1p)-1E
2

P'Sn
1 1 2

, K, = SI/
2
K(K 'SK)1/

2
. (4.3)

Then Al =nK m -Inq, Pn'P, = 1q, P,,Kn=0 (4.4)

If H, holds, the model (1.4) can be rewritten as

Y= B•X,, 1 + e, (4.5)

where Xin = Sl 1/2 Xi, as defined in (3.1),

B. =KnM, + Pn n, (4.6)
M, - (K SK) 11Mo + KS,-A,, (4.7)

and 0,, is defined by (3.7).
Put Mo,=-(K'SnK)11 2 Mo. The model (1.4) under H0 has the form

Yi = (KMon)'Xn + ei" (4.8)

Denote by AKf the M-estimate of Mon, i.e., MA is such that

n n
E e (Y - RfKnXin) = m o ( Y-M'KX,.,). (4.9)

i=1 M:(m-q)xp ji I

Note that the restricted M-estimate of Bn is fin =Snl 2!l = KnA~l.

Lemma 4.1. Suppose that (A I)-(A5 ), (3.5) and (3.6) are satisfied. For any constant
c>0 we have

n
sup -{ G'KnXin) - (Y -BXin)} Xin

•a-M.<•c iv •4
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+ (A K)G*M*)-(A( P,) "-*0 in pr., (4.10)

and

sup o
ýG-Mj-cIi=

Sfn(e**)0+n(G*--M*)I0o inpr., (4.11)

where

S(e*) *' = e u(ej) g (Pxi,) - +&'(A *' Iq)O*,

gn(G*-M*) = (G*-M,*)' (Ei) 0 (KnXin)

-½(G*-M*)'(A ®!r - q)(G* M*). (4.13)

Note that (4.10) and (4.11) can be simply rewritten as

n
sup v{(ei -B'Xin) - (Si)}®Xin+(A Im)B* -*0 in pr.

(4. 10)'

and

s nu il{o(Ei- B'Xi,,) - (ei) +B*'(V(Ei) ®Xn)

-'B*'(A & IIm)B* -0 in pr. (4.11)'

The proofs of (4.11)' and (4.10)' are similar to those of Theorems 2.1 and 2.3 in
Bai, Rao and Wu (1992). Note that when we use Theorem 25.7 in Rockafellar
(1970), we could remove the differentiable condition on {If}, regard Vf(x) as a
subgradient of f at x, and only keep the differentiability condition on the limit
function f.

Lemma 4.2. Assume that (A1 )-(A5 ), (3.5) and (3.6) hold. Then

nA.-n - M, Kn'Xi,, '(ei)A - + Op(1),

ni=1RT*,- M* = (A -I V(gi)) & (KnXin,) + op(l). (4.14)

Especially for the unrestricted M-estimate Bn = S n/ 2 A of B,, we have

nIfin-Bn = Xin vf(Ei)A-1 + opl)
i=lI

n
B* - * = , (A -'y/(Ei)) (9 lin + Op(l). (4.15)

..i.
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Proof. Write
1I=M" + K, KXi,, V'(Ej)A-l

i=1
or

1 M1 = * + (A -'Y/(Ei)) 0 (K,'Xi.).

Since M/*-M,* has an asymptotic normal distribution, we have

IM- M II = OP(l). (4.16)

By (4.11), it follows that for any c>0 and 6 >0,
n

sup I(IIM-MIj •<c) {o(Yi-G 'KnXi,)-Q(Y, - 'K, X',)
gG-MIt =6 1=

-(G*-*)'(A 0m~q)(G*-*) --- 0,

in pr., (4.17)

and that for n large, the event (IQR--MII <c) implies that

n n
in Y -G'n'i, (Yj - M K.X,.) + 3., (4.18)

•G-M•7/ =6 i=1i1

for some A>0. By (4.1C), (4.18) and the convexity of o, we get

P(JMn-RIŽ5)- 0 as n--oo, (4.19)

and (4.14) follows.

Proof of Theorem 3.1. Without loss of generality we assume that Co=O. Under
Hn we have from (4.6)

an = KnMn + P.n e

(refer to (4.6), (4.7) and (3.7)). By (4.15) we have

nBln = Bn + Y, Xi,, y'(Ei)A - + op(1). (4.20)

By (2.4) and (3.1),

WV = B'P(P'SnI'P)-I'P'B = BnPnPnBO. (4.21)

By (4.6), (4.20) and (4.4) we get

Pnfn = Un + en (4.22)

and the theorem follows from (4.21) and (4.22).

Proof of Theorem 3.2. Under Hn, we have B,=K~nM+ Pnen. By (4.14),

IIA,- M"II = O(1). (4.23)

I-
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By (4.10) and (4.23),

+(AOK,,)(A;*-M,*)-(A®P,,)e*-0 in pr., (4.24)

which implies that

n

S(y(Yi -OnXUi)- qi(i)) ® (KXin)

+(A (1m-q)(Mýý*-Mn*)--0 in pr., (4.25)
and

n (q ( uYi -'A i C P "
i~-I

-- (A ®I,)e:*- o, in pr. (4.26)

By (4.14) and (4.25),

SY(Y - BXn) (K,,Xn) - 0 in pr., (4.27)
i=1

as n -- o. By (2.2), (2.6), (4.26) and (4.27), noting that K,,K,, + PP =I,, we have

Y= I(Yi(X-Bnn)Xi)(Kn ) KnY/(Yj-Bn)Xj,)

+ •,(Y,-OnX,.)x/.Pn E PX,.jn,( Y -',Xn

V -i)Xin P Aen E PnXjnY1(j)+enA +op(1), (4.28)

and Theorem 3.2 is proved in view of (3.4).

5. Estimation of the nuisance parameters

In practical applications, we need to estimate the nuisance matrix parameters F
and A. A natural estimate of F is

n
f-n BIy -'Xi)Y, (Yi -&,Xi), (5.1)

where A is an M-estimate of B in the model (1.4). To estimate A, we take a pxp

I
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nonsiaguiar matrix Z consisting of (I ._, -as its columns, taki /i h,, > I) such that

h,,/d..- , h,,--, 0 and lir inf nh, >0, (5.2)

define

tlk = q'(Y, - B'X, - h•A) - ##(Y, - B'X, - h(A),

il ... , n, k=. p, (5.3)

and use the pxp matrix

A = (2nh) . ,j....ru,jZ (5.4)

as an estimate of A. We have the following theorem:

Theorem 5.1. Assume that (A,)-(As) are satisfied in the model (1.4). Then

F-, F in pr. as n - oo (5.5)

Furthermore, if (5.2) also holds, then

A , A in pr. as n --. (5.6)

Note that Zhao and Chen (1990) gave a proof for the special case of p = 1.
However, the proof for the general case of p is more complicated.

Proof. Put u=(uI...u)', v-(v 1 .  v.,)', q,(u) (i 1 (u) ... uju))'. \\Write
= {0=(0 ..... ,)': 0 ..... Op= ±+1}. At first we show that, if Ok14<b/2 for some

b>0 and k= l. p, there exists a constant c>0 such that

c Y O'(wt(u - bO) - Vu(u)) <, /, (u + v) - y/I (u)

< c E O'(yJ(u + bO) - V(u)) (5.7)
O E )

and similar inequalities hold for Yluk(u + 0)- y,(u), k =2,.... p.
Note that O'(y/(u + bO) - V(u)) >Ž0 and O'(Vl(u - bO) - y(u)) •< 0 for any 0 E 0.

In fact, by the cyclical monotonicity of y/ (refer to Rockafellar, 1970, p. 238), for
any 0OE we have

t 'V(u) + (bO - v)'wj(u + v) - bO'V(u + bO) <.0 (5.8)

which implies that

(bO - v)'(v (u + v) - V/(u)) <. bO'(q(u + bO) - op(u)) (5.9)
and

(bO + o)'(Vu(u + v) - V(u)) >, bO'(V(u - bM) - i(u)). (5.10)

For simplicity we vwrite 0=(0(9,...,0p_)', u =(U, ... , uP-Yi)', q'=(it ... , ig,, i)',

and sometimes we write yl(u') for yl(u). Taking OP,= I and -1 in (5.9) we get

I

4
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(bM' - ')((,u(u + U) - Y'(u)) + (b - vp)(ylp(u + v) - vp(U))

, b(; 1) (v W'+ biý up + b) - q/(u)} (5.11)

and
(bO' - 6')(y/(u + ,) - O•(u)) - (b + vp)(ylp(u + U) - vp(u))

< b (• - 1){ 1y/ (0'+ bO", up - b) - v (u) }. (5.12)

Multipiying both sides of (5.12) by (b-vp)/(b+ vp), and adding the inequality so
obtained to (5.11), we eliminate Vip(u+v)- /p(u) from (5.11) and (5.12), and get

(2b/(b + vp))(bO' - 6')(Y,(u + v) - Vu(u))

•< b(O', I ){ v,(u' + b(g', 1)) - y(u)} + b(6', - I ){ Vt(u' + b(d', - 1))

- y/(u)}(b - vp)/(b + up). (5.13)

Now it is not difficult to get the second inequality of (5.7) by using the elimination
method step by step. The first inequality of (5.7) could be obtained similarly from
(5.10).

Without loss of generality, we assume that the true parameter matrix B = 0 in the
model (1.4). By (4.15) and B,,=0, we have

P(IIfi,,11>,d,' 2 ) -O as n--o. (5.14)

By (A4) and the strong law of large numbers,

rn -1 n c(ip/'(ei)-- F = (y1 .) a.s., (5.15)
i=1

as n oo. Putting F=(•im) F =(y(')), we have

n 2
)I -{M~~ - Bn -nBq/m ~ni - Y/i(eC)qm(Ci)}

-ByX,.1) =u(•) n- I-B m

i=1 i= 1
r/ 

n

i= i=

On the event (IBII <dn-1/2 ), 11,3Xin 1<dn / 2 for each i. By (5.7), there exists a

positive constant c such that

n

n Xiin) _I(8,))2i( [1fin 11 < dn-1/2)

,< cmax n- It y/(Ei + 2d,/2 0) -- V (Ei) I2 :

0=(01'..... p)", 01 ..... p=+lI . (5.17)
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By (A3) and (As), for fixed 0 we have

E n-1 •, y/(-Pj+2d./20)- VtlEi)ý2 = El/(Ej + 2d.,'20)_ q,(Ej)[[2---.

(5.18)

as n- oo. By (5.14) and (5.16)-(5.18), we get

lim y() =0 in pr., for 1,m=l .... p, (5.19)
n -m

which implies (5.5) in view of (5.15).
Now we proceed to prove (5.6). To this end, we prove that for any c>0,

(nh)-' (vu1(e, - BX, + hk) -nj( + h•k))I(ll. <c) -- 0

in pr., 1= 1,...,p. (5.20)

By (5.7), in order to prove (5.20), it is enough to prove that for each fixed Oe e,

STn • (nh)-' Y O,'(/(ei + 2cdn 0+ h~k) - y/(ei+ h~k)) -- 0

in pr., as n--,co. (5.21)

By (A3), (A5) and (5.2), we have

Var T7,< (nh2 )f-E[O'(qt(ej + 2cd,9 + h~k) - y/(e + h(k))12

< (nh2)-11112 Elly/(81 + 2cdO+ h,)- v/(ej + hk)12 -0. (5.22)

On the other hand, by (A2), (As) and (5.2), we get

ETn = h-'O'E(y1(er +2cdf0+h~k)- V/(el +h4*))•-0. (5.23)

By (5.22) and (5.23), we get (5.21) and (5.20). Noting that Ili?,Al =Op(l), we have

n
(nh)- (/(e, - 6,',Xi + h(k) - ql(Ei+ h~k)) - 0 in pr. (5.24)

In the same way,

n
(nh) ( - ,i h'k) - v(c, - h(k)) --, 0 in pr. (5.25)

By (A3) and (5.2), for m= 1. p.

Var (nh) Y , (y/m(Eji±h~k) -Im(Ei))}

< (nh 2)- 1E(y/m(E hG) - Vr(El))2 0 as n -o. (5.26)
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On the other hand, by (A2) and h, - 0, we have

(2nh) E(VI(ei i hýA.) - V/(c:, - h•'k))

=(2h)-'E(yl(EI+Ck)-v(cl-hk))--Ak, k=l,...,p. (5.27)

By (5.26) and (5.27), %e have
n

(2nh)-' ( (ei+hk)-y(Ej-hG))--Ak in pr., (5.28)

for k = 1, .... , p. By (5.24), (5.25), (5.28) and (5.3), it follows that

n
AZ = (2nh)-l r 1, -.... _)ip] -AZ in pr., (5.29)

and (5.6) is obtained. Now Theorem 5.1 is proved.

Note 1. In estimating A and proving the consistency of the estimate, we have not
made any additional assumptions on g. The only property used is its convexity. If,
however, Q is twice differentiable, other estimates are possible, as in the case of the
least distances estimate considered by Bai, Chen, Miao and Rao (1990).

Note 2. A referee remarks that Theorem 5.1 can be proved by applying the convexity
lemma in a recent paper by Pollard (1991). It is true, but the detailed proof given
by us using similar ideas will be of help in solving similar problems. Pollard's paper
which contains results similar to the earlier papers by Bai, Rao and Yin (1990) and
Chen, Bai, Zhao and Wu (1990) was not available to us when our paper was submit-
ted for publication.

Note added in proof. This work can be extended to a more general case where

= Lo()o-Q( 2 ) is a difference of two p-variate convex functions p(o) and 9(2) with

V(u) Y/ 1 (u)- _,V2)(u) being the difference of their subgradients at u. Assume that
(A )-(A 5 ) are satisfied with p and y/ in (A )-(A 5 ) being replaced by 0(1), Yt(1 and(2)2Y/ (2). We can construct the same test statistics with o=Vo°)-_V(2) and

yj = 1()-Y/(2) as before. It can be shown that, if the above conditions are met,

Theorems 3.1, 3.2 and 5.1 are still valid. In this context, tbe minimizer of the rele-
vant function could be taken as its some local minimizer having some properties.
For the details, refer to Bai, Rao and Wu (1992).
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